Twofish Technical Report #6

A Twofish Retreat: Related-Key Attacks
Against Reduced-Round Twofish

Niels Ferguson* John Kelsey'

Bruce Schneier? Doug Whiting?

February 14, 2000

Abstract

The Twofish AES submission document contains a partial chosen-key and a related-key attack against
ten rounds of Twofish without whitening, using 256-bit keys. This attack does not work; it makes use of
a postulated class of weak key pairs which has the S-box keys and eight successive round keys equal, but
no such pairs exist. In this report we analyze the occurrence of this kind of weak key pair and describe
how such pairs may be used both to mount attacks on reduced-round Twofish and to find properties of
reduced-round Twofish that are not present in an ideal cipher. We find that related-key and chosen-key
attacks are considerably less powerful against Twofish than was previously believed.

Keywords: Twofish, cryptography, cryptanalysis, related-key, block cipher, AES.

Current web site: http://www.counterpane.com/twofish.html

1 Introduction

In the Twofish paper [SKWT98—written as part
of the AES process—and in the Twofish book
[SKW99], we described a related-key attack
against 9 rounds of Twofish with whitening, or 10
rounds without whitening, when using 256-bit keys.

The basic idea of the attack is that it is possible to
find two keys, K and K*, which produce the same
set of S-boxes (and thus the same S) and the same
set of round keys K; for a few rounds. We call such
a key pair a weak key pair, and use n to denote
the number of equal round subkeys. For the rounds
in question, the two keys implement the same func-
tion. An attacker can use this fact to distinguish

the reduced-round cipher from a perfect cipher, or
attempt to mount a related-key attack that recovers
the key.

Our original analysis of this type of attack against
Twofish was incomplete, and the results reported in
[SKW98, SKWT99] are erroneous. In this report,
we investigate this attack in more detail.

We will use the notation from [SKW+98, SKW*99];
readers not familiar with the notation should consult
one of these references.

1.1 Summary of Our Results

Our new results are as follows:

*Counterpane Internet Security, Inc., 3031 Tisch Way, 100 Plaza East, San Jose, CA 95128, USA; niels@counterpane.com
TCounterpane Internet Security, Inc. kelsey@counterpane.com

fCounterpane Internet Security, Inc. schneier@counterpane.com

§Hi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com



1. We have determined that there is no pair of
keys which yield n = 6 successive identical
round subkeys while also yielding identical S-
boxes. This implies that the originally postu-
lated case of n = 8 identical round subkeys is
also impossible.

2. We show that it is unlikely that there is a pair
of keys which yield n = 5 successive identical
round subkeys while also yielding identical S-
boxes, although we have not yet been able to
verify this exhaustively.

3. Weak key pairs occur in groups of 272 key pairs
all with the same XOR difference. Any related-
key attack based on these weak key pairs must
be able to distinguish a weak key pair from a
non-weak pair in less then 27! steps.

We are able to detect such weak key pairs with
less than 27! work for:

(a) Up to n 4+ 3 rounds without whitening.
(Thus, if n = 5, this would result in an
eight round attack.)

(b) Up to n + 1 rounds with whitening.
(Thus, if n = 5, this would result in a
six round attack.)

4. Reduced-round Twofish with n + 2 rounds
(with whitening) has some undesirable proper-
ties which might lead to an attack under some
circumstances, although we have been unable
to find such a circumstance.

We emphasize that the case n = 5 is improbable to
exist at all, and thus that our current best attacks of
this type is against 7 rounds without whitening and
6 rounds with whitening. We also note that we use
more powerful attacks on these weak key pairs, espe-
cially on the reduced-round Twofish variants with-
out whitening, than appeared in the original paper
[SKWT98, SKWT99].

These new result represents a “retreat” from the
related-key attack we believed we had previously;
hence the name of the paper.

1.2 TImplications of the Results

Twofish is substantially less susceptible to related-
key attacks of the kind considered here than we pre-
viously suspected. The way the key material is used
to derive the round subkeys interacts with the RS
code used to derive the S-box keys in a way that
makes this kind of related-key attack impossible for

more than a small number of rounds. This interac-
tion has important implications for attacks on hash-
ing modes of Twofish, which appear to be extremely
difficult even when the attacker has full control over
the key.

In more theoretical terms, these results demonstrate
the advantages of the reuse of the same key mate-
rial in two “orthogonal” ways within the structure
of the cipher. We note, however, that the Twofish
key schedule is required to do two orthogonal things
with the same key material, due to the cipher’s key-
dependent S-boxes. This kind of design may not be
reasonable for other ciphers.

1.3 Guide to the Paper

The remainder of the paper is ordered as follows:
First, we give an overview of the kinds of related-key
and chosen-key attacks described in the remainder
of the paper. We then consider the class of weak
key pairs which yield the same S-box and the same
round subkeys for n successive rounds, focusing on
how common and easily found such key pairs are.
Next, we discuss ways to use this class of weak key
pairs to attack reduced-round Twofish versions, or
at least to distinguish their behavior from that of an
ideal cipher. We conclude with a number of inter-
esting open questions raised by this research.

2 Related-Key Attacks using
Weak Key Pairs

Twofish derives both its key-dependent S-boxes and
its round and whitening subkeys from its key. When
we considered related-key and chosen-key attacks on
Twofish in [SKWT98, SKW99], we were unable to
find any useful related-key differential attack with-
out using identical S-boxes for the pair of keys at-
tacked. This is due to the use of the RS code when
deriving the S-box keys from the input key. The re-
sult is a complex set of constraints on sets of keys
which produce the same S-box keys.

In our attacks, the most useful property we have
been able to find for a pair of keys is for both keys to
generate the same S-boxes, and also the same round
subkeys for some sequence of n successive rounds.
This allows a number of attacks on the dissimilar
rounds. In [SKW198, SKW99] we describe an at-
tack of this kind based on a postulated large class of
key pairs yielding eight identical round subkeys as
well as identical S-boxes.



Because of the way the S-box keys are derived, re-
quiring that two keys generate the same S-boxes
puts very stringent constraints on the pair. In
[SKW98, SKWT99] we assumed that the only con-
straint on a pair was in the number of different S-
boxes used for subkey generation that had to be
active. This led to a calculation of the number of
related-key pairs which we might expect to gener-
ate n successive identical round subkeys which, for
each n considered, was much larger than the correct
number. The calculation was inaccurate because we
failed to consider the complicated set of linear re-
lations imposed on the keys by requiring that the
S-boxes remain identical. Also, rather than verify-
ing whether a pairs of keys with some number n
of colliding round subkeys existed, we used a very
pessimistic (from the cipher designer’s standpoint)
estimate. This sufficed for the goal of that analysis,
which was to check whether Twofish was vulnerable
to related-key attacks, but seriously overestimated
the impact of related key attacks on Twofish.

Below, we discuss our current estimates of how many
pairs of keys may be expected to give a run of n
identical round subkeys while also giving identical S-
boxes. Given n identical round subkeys we discussed
a number of attacks which could be mounted.

2.1 Attacks and Properties

The results we have on Twofish currently define a
class of weak key pairs. Given access to encryptions
under a pair of such keys, we can recover the effec-
tive keys for some reduced-round versions of Twofish
with less work than we would need to simply try all
members of the class of weak key pairs. This is the
main sense in which it makes sense to consider an
attack.

We can also consider attacks in which we request
many pairs of keys with some chosen XORr difference,
or other simple relationship, and wait for one of these
weak key pairs against which to run one of our at-
tacks on reduced-round Twofish. These attacks are
necessarily very expensive, since they must be car-
ried out on many different key pairs until a weak key
pair is found. It is thus quite hard to find a related-
key attack using these properties which is less work
than brute-force searching the whole key.

Finally, we can consider properties of some reduced-
round Twofish versions, based on weak key pairs,
that differ from those expected from an ideal cipher.
It is not clear what computational limits ought to
be considered when looking at these properties. We
use the rule of thumb that any property that can

be detected with less work than a full key search is
interesting. This even makes properties that require
the entire plaintext/ciphertext mapping under the
two keys worth investigating.

3 Determining n

This section concerns itself with dermining a value
for n: the maximum number of rounds for which a
pair of keys can share successive subkeys while at the
same time producing identical S-boxes. If we look
at the Twofish key schedule, we see that each round
key (and each half of a whitening key) is computed
from the key using eight S-boxes. The outputs from
these 8 S-boxes are combined using two MDS ma-
trixes, a PHT and some rotations but these are all
invertible. To get identical round keys, we need to
get identical outputs of the eight S-boxes.

3.1 The Eight S-boxes

The eight S-boxes are defined by

uoli] = q1[qo[qo[q1[q1[i] ® ma2s] ® ma6] ® ms | © mo]
u1[i] = qolqo[q1[q1[qoli] ® mas] © mi7] © mg | © M|
uz[i] = q1[q1[qo0[go[qo[i] © mag] © mig] © m10] © Mol
usli] = qolq1[q1[qo[q1[i] ® mar] ® mig] B my1] ® ma)
uali] = q1]go[qolq1[q1[i] B mas] & mag] B maz] B My
us[i] = qolqo[q1[q1[qoli] © Mmag] © ma1] & m13] © ms]
ug[i] = q1[q1[q0[q0[q0[i] © m30] © Maa] © Mm14] © M
uz[i] = qolq1[q1]q0(q1[i] ® ma31] & mas] @ mis] ® me]
where my, ... ,ms; are the 32 bytes of the key and

the ¢;’s are the two ¢-boxes. This form is not the eas-
iest to work with. First we observe that in a single
round the boxes ug,... ,us get an argument of the
form 27, while uy, ... ,u7 get an argument of 25 + 1.
Furthermore, as we are only interested in equality,
we can strip off the outer g-box. We now get:

volj] = qolqolqr[q1 (2 ] © mas] © mus] ©msg | ©mg
vili] = @olqila1lgo(2] ] ® mas] @ mar] @ my | My
v2li] = @1[qolaolqo[25 ] ® mag] B mas] & mig] B me
vs[j]l = qilq1(qolq1[25 ] ® mar] & mag] B ma1] & ms
va[j] = qolgolq1[q1[2741] @ mas] © mag] © Mma2] © My
vs[J] = qolq1[g1[q0[27+1] ® mag] B Mma1] & miz] B ms
v6[j] = q1[qo[q0[qo0[27+1] & m3o] B Mmaz] B Mm1a] & Mme
v7li] = @il lgo[q1[25+H1] © mz1] © maz] © mas] © my



3.2 Finding Collisions in a Single S-
box

We are trying to find a collision for n different val-
ues of j. Let J be the set of values of j for which
we try to find a collision, thus |J| = n. That is, we
try to find two keys which generate the same values
for v;[j] for i = 0,...,7 and j € J. In our original
analysis we observed that there are 232 different sets
of keys for each of these S-boxes, and that therefore
we can expect to find a collision for eight different
values of j due to the birthday paradox. This is in-
accurate; the structure of v; is not purely random.
Instead, the last key byte is a simple XOR at the out-
put. This reduces the expected number of rounds for
which we can find a collision for this S-box by one.

The first observation is that the sets of key bytes
used for the eight S-boxes are disjunct. There-
fore we can construct the collisions for each of the
eight S-boxes separately. As there are only 4 bytes
that define an S-box, we could do a 232 search
and find all collisions on the set J. We can do
it even faster than that. Let jo € J and let
J = J\{jo}. (We assume that |J| > 2 which
is the case we are interested in.) The key bytes
(mag, mig, ms, mg) define vg. If there are two dif-
ferent values for the key bytes (ma4, mig, ms, mo)
and (mb,, mig, mk, m{) which produce a collision on
all vg[j] for j € J, then they produce a collision on
volj] ® vo[jo] for j € J’. This leads us to define

vold] := wolj] @ voljo] =
qolqolq1[q1[2]] ® mas] ® mig] ® ms| ®
qo[qolq1[q1[2j0] © ma4] ® mig] ©mg] (1)

in which the effect of the mg has been canceled out
and we are left with a function affected by three
key bytes. We need to find a triple of key bytes
Ma4,M16, Mg, such that both keys produce equal
vh[j] values when j € J'. There are 224 different
triples, and thus a total of 247 pairs of triples. As
each of the n — 1 elements of J’ imposes an 8-bit
restriction, we expect that there are 247-8(n—1) —
295=8n pairs of triples which produce a suitable col-
lision.

Once we have a a pair of triples (mag4, m16, mg) and
(mby, mig, mg), we can extend them to quadruples
to provide a full collision on vg[j] for all j € J. We
define

= qolqo[q1[q1[2]] ® ma2s] ® mi6] ® ms]
@ qolgola[q1[27] ® myy] © M) © my]

for any 5 € J. (The value of j that we choose is
irrelevant due to the fact that we have a collision
on Equation 1). We can choose a m( at random,
and compute my := mo & §. The two quadru-
ples, (magq, mig,mg, mg) and (mbh,, mis, mg, mg),
now produce the same set of values vg[j] for j € J.

Note that we can easily compute the set of all pairs of
quadruples with this property. It is 224 steps of work
to find all pairs of triples, and each of these leads to
256 pairs of quadruples. We do not even bother to
store all 256 pairs of quadruples. All we store are
the values ma4, mig, ms, mby, mis, mi, and &; gen-
erating the structure of 256 pairs of quadruples they
represent is trivial.

We can perform the equivalent calculations for each
of the eight S-boxes and store all the results. For
each S-box we expect to store 29787 structures
which is quite reasonable for the values of n we
are interested in. Table 1 shows for different n
how many of these structures we found for the set
J=1{5,6,... ,n+4}, which are the values of j used
to compute the round keys of the second round on-
wards. The exact numbers for different choices of J
will be slightly different, but we expect no major de-
viations. Note that the actual number of structures
that we found tends to be slightly larger than our
expected value. We have no theoretical explanation
for this effect; it might relate to the structure of the
g-boxes or the way the S-boxes are built out of the
g-boxes.

3.3 The RS Restriction

As Table 1 shows, there is no collision on 8 rounds
for our chosen set J. For n < 8 we can construct
two keys, K and K*, that generate the same set of
round keys. But this is only half the condition; they
also have to generate the same S, and thus the same
set of S-boxes for the round function.

The S-box key S can be written as a 4 X 4 matrix
over GF(28) defined by

Ma24 Mie Mg My
M =
m31 MM23 Mi5 My

S:=RSx M

where M is a 8 x 4 matrix filled with the key byte
and RS is the 4 x 8 Reed-Solomon (RS) matrix. Note
that this is not the usual representation of S, but it
is an equivalent one. The order of the columns of M
was chosen to simplify the discussion to follow.



n=4 n=5 | n=6 | n=7 | n=8
vo | 8589897 | 34138 | 133 1 0
v1 | 8595400 | 34810 | 122 0 0
vg | 8603230 | 33720 | 139 0 0
vy | 8594247 | 33984 | 132 0 0
vy | 8597633 | 34354 | 135 0 0
vs | 8596388 | 34510 | 124 0 0
ve | 8602423 | 34010 | 125 0 0
vy | 8601218 | 34121 | 137 0 0

Table 1:

Number of collision structures found for each S-box

We are not interested in the actual value of S, only
in the fact that it should be the same between the
two keys K and K*. Since S is a linear func-
tion of M, it is natural to look at the differences
in M. Looking back at the results of Section 3.2,
we are now only interested in the difference be-
tween two quadruples. We call such a difference a
row, and each structure naturally leads to the row
(mag ® mbhy, mig O mig, ms & mg, ). Note that we
get one difference value for each structure of 256
quadruples. Let R; be the set of all rows that we
found for S-box 4, plus the all-zero row (0,0,0,0).
(Two different structures might result in the same
row, in which case |R;| is less than the number of
structures we found.)

If we have two keys K and K* that produce the
same S-boxes, then we can look at the two matrixes
M and M’ that they define. In particular, we define
R:=M—M'. (We can also see thisas R =M & M’
with byte-wise XOR operations as these matrixes live
in GF(28) in which both addition and subtraction
are equivalent to a byte-wise XOR.) The condition
that K and K* produce the same S is now equiv-
alent to saying that RS x R = 0. Furthermore we
know that the first row of R must be a member of Ry
otherwise K and K* would not produce a collision
on the round keys. Similarly, each row of R must be
an element of the corresponding R;.

3.4 Finding a Key Difference

We are now close to our goal. All that is left is to se-
lect one row from each of our R; to make up a matrix
R with RS x R = 0. The trivial solution R = 0 is not
interesting, as that corresponds to K = K*. For any
nontrivial solution we know that every nonzero col-
umn of R must have at least five nonzero elements.
(This is a property of the RS matrix). As we must
have at least one nonzero column, we must use colli-
sions on at least five of the S-boxes. This argument

immediately shows that the case n = 7 cannot occur
as there are not enough S-boxes for which we have
a collision.

3.5 Exhaustive Search Algorithm

In the case n = 6 we have approximately 128 dif-
ferent row values for each of the eight rows of R.
We performed an exhaustive search to find any non-
trivial R that satisfies the equation. The simple
method is to try all 228 ways of choosing the first four
rows. Given the first four rows, the last four rows are
uniquely determined by the linear equation. These
are thus easy to compute, and it is easy to check
whether each row value occurs in the respective R;
set. Note that only about 228 of the 2!?® sets of four
row values for the last four rows are possible, so the
chances of any one matching is approximately 27100
and the chances of finding a suitable R are about
2772 Our search found no suitable R, which rules
out the case n = 6 for the sets J we are discussing.
Solutions for other sets J for the case n = 6 are so
unlikely that they do not seem to be worth looking
for.

3.6 An Improved Algorithm

The algorithm above cannot handle the case n = 5
as it would take about 2% steps. An improved al-
gorithm can be used which is faster. Let N be the
average number of row values for each row. We want
to guess the first three rows and then quickly elimi-
nate many of our guesses to reduce the set of possible
choices for the first three rows. We choose three of
the remaining row positions which we will call the fil-
tered rows; we will use several of these choices but we
will describe the case where we choose the last three
row positions. We now choose p, a 1 x 4 row vector
over GF(28), such that p x RS has 0 coordinate val-
ues in columns 6, 7 and 8. Observe z := px RS x R,



which must of course be zero. The choices for the
last three rows of R do not affect this value. The
choices for rows 4 and 5 together generate N2 ~ 239
different values. We build a bitmap of 232 bits; each
bit represents a possible value for x and we set those
bits that correspond to a value that can be generated
by the choices of rows 4 and 5.

Any choice that we make for rows 1-3 results in a
contribution to & which has to be cancelled by rows 4
and 5. With our bitmap we can very quickly discard
about one-quarter of the guesses for rows 1-3. We
can make similar bitmaps for other initial choices
of our three filtered rows. There are ten suitable
choices for which rows to filter. If we use eight of
them, and 232 bytes of memory to store the bitmaps,
then we expect 1 in 2'6 of our guesses to pass the
eight tests.

The algorithm now proceeds as follows. We run
over all N3 ~ 2% guesses for the first three rows
and apply eight of the bitmap tests. We expect that
about 229 guesses survive these tests. For these cases
we guess an additional row. We now have four of
the rows which together with the linear restriction
fully specify R, and can therefore quickly determine
whether this is a solution. The overall running time
of this algorithm is dominated by the first phase,
which takes 24° steps for the case n = 5.

We have not had the resources to implement this
algorithm and run it for n = 5. However, we can
perform the same probability analysis that we did
before. The total number of matrixes R that we can
construct from our eight set of rows is about 2120-5,
Each R has a probability of 27128 of satisfying the
linear restriction, so we expect to find about 27 7°
solutions for n = 5. This is well below one, and
based on this information we estimate that the case
n = 5 is not possible. To be quite sure we would have
to test all “interesting” sets J as well. There are 12
sets of J which correspond to 5 consecutive round
keys. Then there are some attacks that require equal
whitening keys, which produce a few more interest-
ing sets J. All in all we still expect that there is no
solution for n = 5. Therefore we believe that at best
it is possible to find an R for n = 4.

We assume that any attacker has the resources to
construct suitable weak key pairs. For n = 5 this
is certainly technically feasible using our improved
algorithm. For n = 4 it is much easier. The attacker
simply chooses the first four rows of R arbitrarilly.
The RS restriction uniquely determines the value for
the last four rows, and there is a 273% chance that

these four rows are possible values.

3.7 If We Find an R

If we find an R with the desired properties, then
we immediately get a huge number of key pairs
(K, K*) that satisfy all our restrictions. If R has
eight nonzero rows (which seems to be the most
likely case), then we have two key values for each
row that we can use. One of each is given to K and
K*, which provides us with 28 different key pairs.
Furthermore, our rows only specify the difference be-
tween the last key bytes in every quadruple. Given
any pair (K, K*) we can XOR any constant into the
first eight bytes of both keys and get another pair
of keys with the same property. (This corresponds
to the 256 pairs of quadruples that each row gener-
ates.) All in all we expect to get about 272 different
key pairs, all of which share the same property. Note
that we are counting ordered pairs, so both (K, K*)
and (K*, K) are counted separately. We expect that
these 272 key pairs consist of 27 different keys, and
generate 232 different values of S, with each S being
generated 2% times.

As we mentioned above, for the case n = 5 we expect
no valid R at all, but if one exists, we get a set of
272 weak key pairs. For the case n = 4 we expect to
get about 2°6 different solutions for R, each of which
generates a set of 272 weak key pairs.! We therefore
expect that for n = 4 there are about 2!2® weak key
pairs made up out of 2'27 different keys.

4 Attacks Based on Weak Key
Pairs

For the remainder of this paper, we pretend that
Twofish is a pure Feistel cipher (without the ro-
tations in the datapath). We can in fact rewrite
Twofish as a pure Feistel cipher [Fer99], although
that introduces additional rotations at the input and
output of the round function. Taking the rotations
into account complicates the description of our at-
tacks, but it does not seem to affect their complexity.

As our type of weak key pairs cover more rounds for
the 256-bit key size then for shorter keys, and the
permissable workload for a 256-bit key size attack is
higher, we will only consider the case of the 256-bit
key cipher. The 128-bit key and 192-bit key versions
are much harder to attack using this type of weak
keys.

1In this estimate we ignore minor effects, such as what happens when two colisions in a single S-box generate the same row

difference for R.



There are three different kinds of attacks that we
look at:

1. Related-key attacks, in which the attacker re-
quests a pair of keys with a certain relation-
ship, and tries to use this to recover both keys.

2. Weak key pair detection attacks, in which the
attacker tries to detect a weak key pair with
less work than he would require to simply try
all possible weak key pairs.

3. Properties that reduced-round Twofish has,
but which an ideal cipher is not expected to
have, using these weak key pairs.

4.1 Related-Key Attacks

In a related-key attack, the attacker is permitted
to request encryptions under a number of different
keys. He is allowed to choose the relationship be-
tween the keys, but not the keys themselves. An
attacker can exploit a weak key pair to mount a re-
lated key attack. He requests a large set of keys,
with some simple relationship (such as a fixed XOR
between pairs of keys), and hopes to end up with a
weak key pair. He then mounts an attack to detect
this weak key pair.

Related-key attacks using our type of weak key pairs
are not very powerfull. There is no general simple
relationship between two keys in a pair. The best
an attacker can do is to choose a XOR difference be-
tween two keys given by the matrix R. If the first
key happens to be one of the set of 27! keys that oc-
cur in weak key pairs generated by this R, then the
attacker gets a weak key pair. The chances of this
happening are 27185, so the attacker has to detect
the weak key pair in less than 27" work. Even for the
case n = 4, where there are far more weak key pairs,
the same bound holds because the attacker restricts
himself to the weak keys generated by a single R at
the moment that he chooses his difference. In other
words, this type of related key attack boils down to
detecting weak key pairs in less than 27! steps. This
is our second type of attack, which we will discuss
in more detail in section 4.2.

As noted in [KSW96], there is a general related-key
attack based on the time-memory tradeoff; an at-
tacker given 2'?® related-key queries and 25 chosen
plaintext queries per key, as well as a lot of memory,
can break any cipher with a 256-bit key and 128-bit
plaintext.

4.2 Detecting Weak Key Pairs

We will now discuss attacks which allow an attacker
to detect whether two keys unknown to him form
a weak key pair. If the attacker can do this in less
than 27! steps, it can be used to create a related-key
attack.

In the case n = 4 there are about 2'?® weak key
pairs made up out of 227 keys, but that does not
mean that detecting a weak key pair in less than
2127 steps makes an attack. After all, out of the to-
tal of 2°12 possible key pairs only 2'2® are weak. An
attacker is much better off doing an exhaustive key
search than waiting for a random pair of keys to be
weak. In a related-key attack the attacker can use
the relation between the two unknown keys to im-
prove the chances of getting a weak key pair, but as
we discussed this still requires the weak key pair to
be detected within 27! steps.

4.2.1 Detecting a Weak Key Pair with n + 2
rounds

Consider a Twofish variant with n+2 rounds and no
whitening, and a weak pair of keys which give iden-
tical round subkeys for the first n rounds. When we
encrypt X; under these two keys to get Y; and Y;*.
The value Y; @©Y;* has two bits that are constant and
independent of X;.

To see why this property exists we look in more de-
tail at the Twofish encryption. If we compare the
two encryptions, the first difference occurs when the
round keys for the nex-to-last round are added to
the output of the F’/-function. This results in a fixed
XOR difference of the two least significant bits of the
two 32-bit words. This difference is XORed into the
right half of the encryption state, and appears in the
left half of the ciphertext.

By observing these two bits, we can detect a weak
key pair on n+2 rounds. Rejecting a key pair that is
not weak requires 2% identical plaintexts under each
key on average. As there are about 2512 key pairs
that are not weak, we need about 28 plaintexts to
fully detect the weak key pair property.

Another way of looking at this attack is to split the
cipher into two parts. The first n rounds are an un-
known but fixed mapping. The last 2 rounds is what
we are attacking. Our attack on these 2 rounds can-
not use any properties of the plaintext other then
equality, as all other useful properties are destroyed
by the first n rounds.



4.2.2 Detecting a Weak Key Pair with n
rounds and whitening

Consider a pair of keys, (K, K*), which produce
identical input whitening keys, and identical round
subkeys for n — 2 rounds. This corresponds to a
set J of size n that includes the indexes for the in-
put whitening key generation. We can detect such a
key pair using the same property. The XOR of two
ciphertexts generated by encrypting the same plain-
text under the two keys will have two fixed bits.
Therefore the same attack applies.

4.2.3 Detecting a Weak Key Pair with n+ 1
rounds and whitening

Consider a pair of keys which has n identical 64-bit
subkeys, arranged as:

e The second input whitening key.

e The first n — 1 rounds.

We now guess the 64-bit difference in the left half
of the input whitening key. For each guess, we can
create pairs of plaintexts (X, X*) which, when en-
crypted with their respective keys, result in the same
input to the first round. The encryption states re-
main identical until the last two rounds. As above,
we get two fixed bits in the XOR of the two cipher-
texts if our guess was correct.

As we noted above, it takes on average 2% plaintext
to discard a wrong guess, and each plaintext requires
two encryptions to be performed. The overall com-
plexity of this attack is therefore about 266, which
is just below the threshold of 27!.

4.2.4 Detecting some Weak Key Pair with
n + 3 rounds

We now turn to the case of n + 3 rounds where the
first n rounds have the equal round keys. We gener-
ate a large number of arbitrarilly chosen X; values
and encrypt them under both keys. After about 264
tries we expect to find an X, such that Y; and Y;*
have identical left halves. We call such a pair of
ciphertexts a matching pair.

Recall that R, ; with ¢ € {0,...,3} is word 7 of the
encryption state after round r, and that the rounds
are numberd 0, 1, ...n+2 for an n+ 3 round Twofish
version. As we discussed earlier, the encryptions of
a matching pair have a fixed difference in bit 0 (the
least significant bit) of Ry, 1. (The R values are taken
after the swap, so the fixed difference after n + 1

rounds is now in the left half of the state.) This prop-
agates to a fixed difference in bit 0 of R, 11,3. We
then encounter a one-bit rotation to the left, which
moves the fixed difference to bit 1 of the word.

We now look at the output of the F-function of the
last round. Note that the inputs to this F-function
in the two encryptions are identical, as they are
formed by the two left halves of the ciphertexts of
a matching pair. Therefore, the outputs of the F’-
function (without the key addition) are identical too.
The only differences in the last round between the
two encryptions are the round keys. We are only
interested in bit 1 of the second output word of the
F-function. If the two keys of the weak key pair have
the same least-significant bit in the second word of
the round key of the last round, then the difference
between the encryptions in bit 1 of the second out-
put word of the F-function in the last round is fixed.
This occurs for about half of all weak key pairs.

The cipher now combines our two bits with a fixed
difference in the Feistel-XOR of the last round. The
result is that bit 1 of the third word of the cipher-
text must have a fixed difference, irrespective of the
value Xj;.

The end effect is that, for a matching pair and for
a weak key pair that matches our additional restric-
tion, one bit of Y;®Y;* has a fixed value. On average
we will need 3 matching pairs to reject a non-weak
key pair. Thus, we can detect about half of the weak
key pairs using less than 257 encryptions on average.

4.3 Unexpected properties

We now turn to our third category of attacks: dis-
tinguishable properties that reduced-round Twofish
has that result from our weak key pairs. In this type
of attack we assume that the attacker can force the
use of a weak key pair, and is looking for some prop-
erty that relates the two resulting encryption func-
tions. Attacks like this can occur in settings where
the block cipher is used to create a hash function.
Note that the purpose of the attack is not to recover
the key. Rather, there might be a situation in which
the property of the cipher leads to a more efficient
attack on the entire system then would be possible
with a perfect cipher.

4.3.1 Correlations on n + 2 rounds with

whitening

Let (K,K*) be a weak key pair which generated
identical round keys for the first n rounds, and let



A be the xOR difference between the input whiten-
ing keys. If we compare the encryptions of Fx (X)
with Ex«(X @ A) then we get the same result after
n rounds. As we saw in section 4.2.1 this leads to
two bits after n 4+ 2 rounds that have a fixed dif-
ference between the two encryptions.?2 The output
whitening does not change this property.

In other words, after one try to determine the actual
difference value, encrypting X with key K gives us
direct information about the result of the encryption
of X @& A with key K*. This is a property that an
ideal cipher would not have, and one that might be
useful to an attacker under some circumstance.

By itself it is not useful to try and use it to predict
the result of encryption by K*. We are working in
a setting where the attacker already knows the two
keys, so the attacker can compute the encryption
under K* himself. We have not found a situation
in which this correlation property leads to a weak-
ness of the system. Nevertheless, we consider this
property to be so serious that we do not want to use
Twofish with n + 2 rounds.

4.3.2 Correlations on n + 3 rounds with
whitening

We can go one round further and show a very slight
correlation on n + 3 rounds with whitening. We use
the property from section 4.2.4. Let (K, K*) be a
weak key pair, let A; be the XOR difference between
the input whitening keys and let A, be the XOR
difference between the output whitening keys. We
define

C(X):=FEg(X)DEr-(XDA;) DA,

If, for any X, the left half of C'(X) is zero, then there
is a particular bit in the right half that has a fixed
value.

Given a quadruple (K,K*,A;;A,) we can detect
this property in 230 steps or so. Once again, this
does not translate to any type of attack. (If we know
the keys we can detect them much easier.) For this
property to be an attack there would have to be a
system which is weakened by this property. Given
that this correlation is very small, and we have not
even found a useful attack using the much stronger
property of section 4.3.1, we do not consider this
correlation to be significant.

4.3.3 Even more rounds

There is a trivial and general way to extend this type
of property to more rounds. In the previous sections
we already used the A-constants to eliminate the
whitening differences. This is the start of taking
the cipher apart round by round. Given an encryp-
tion function Ek (X), we can find a pair (X, f) such
that X — f(Ek (X)) is a very simple function, for
example by letting f undo the last few rounds of
the encryption. This is obviously not an interesting
property as it applies to all block ciphers.

4.4 Reflection Attacks

Another idea is to use the equal round keys to can-
cel each other. Suppose we have n + d rounds
without whitening, and a weak key pair (K, K*)
where the last n round keys are equal. Consider
f(m) := Dg+(Ex(m)). In other words, we encrypt
using K and then decrypt using K*. As the last n
round keys are the same, they cancel in this con-
struction and we are left with a cipher that has
2d rounds. This cipher is very similar to Twofish,
except that there is a swap missing in the middle,
so that the two middle rounds both operate in the
same direction. The two Feistel round functions in
these rounds have the same inputs, and except for
the round keys produce the same output. Thus they
more or less cancel each other out. We have not
studied this Twofish variant with a swap missing,
but we will be very generous and assume that 2d
rounds of this variant is as hard to attack as 2d — 2
rounds of ordinary Twofish. Our best direct crypt-
analytical attack on Twofish is on 6 rounds, so we
expect that we can make this atack work for at most
n + 4 rounds without whitening.3

Whitening spoils much of the effectiveness of this at-
tack. If the output whitening generated by K and
K* are different, then the cancellation of the rounds
which have equal round keys no longer takes place.
Thus, to allow this construction to work at all we
have to require that the output whitening keys are
identical. If we take n to be the number of equal
round keys or equal whitening-key halves then we
get only n — 2 rounds with identical keys. We there-
fore expect at most to be able to attack n+2 rounds
with whitening.

2To be more precise: there are at least two fixed difference bits. There are many weak key pairs that generate more fixed

difference bits.

3This is of course a very rough estimate. Further analysis on this type of attack will probably give us a better bound. Note
however, that we have to improve an attack on the missing-swap variant by two rounds to increase d by one. This seems to be

a very difficult and unrewarding way of attacking Twofish.



5 Conclusions and Open Ques-
tions

In this paper, we have reconsidered the difficulty
of related-key and partial chosen-key attacks on
reduced-round Twofish. By experimentally verifying
the number of successive round subkeys for which
it was possible to get pairs of keys which collide
while also colliding in the S-box keys, we have deter-
mined that our previous related-key attack cannot
work. Related-key attacks of the kind we described
in [SKWT98, SKWT99] cannot cover more than five
successive rounds with identical subkeys, and most
likely cover only four successive round keys.

We have made improvements in the attacks that
make use of weak key pairs. Even with these im-
provements related-key attacks do not seem to be
more powerfull against T'wofish then other types of
attack.

There is a large set of possible related-key attacks
which we have not considered here. For example,
related-key attacks using keys that derive different
S-boxes have not been considered. Likewise, attacks
which interleave identical and different round sub-
keys, instead of putting the different subkeys at one
or the other end of the cipher, have not been con-
sidered. We have also not closely considered at-
tacks in which a pair of keys is directly chosen, and
large sets of colliding plaintext/ciphertext pairs are
sought. This kind of attack would likely be applied
to a T'wofish-based hashing mode.

10

References

[Fer99]

[KSW96]

[SKW+98]

[SKW+99]

Niels Ferguson. Impossible differen-
tials in Twofish. Twofish Technical Re-
port 5, Counterpane Systems, October
1999. See http://www.counterpane.
com/twofish.html.

John Kelsey, Bruce Schneier, and David
Wagner. Key-schedule cryptanalysis of
IDEA, G-DES, GOST, SAFER, and
triple-DES. In Neal Koblitz, editor,
Advances in Cryptology—CRYPTO 96,
volume 1109 of Lecture Notes in Com-
puter Science, pages 237-251. Springer-
Verlag, 1996.

Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-bit
block cipher. In AES Round 1 Tech-
nical Evaluation CD-1: Documentation.
NIST, August 1998. See http://www.
nist.gov/aes.

Bruce Schneier, John Kelsey, Doug
Whiting, David Wagner, Chris Hall, and
Niels Ferguson. The Twofish Encryption
Algorithm, A 128-Bit Block Cipher. Wi-
ley, 1999.



